A Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems
نویسندگان
چکیده
An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed implicitly. A diagonal perturbation strategy is implemented to enhance factorization robustness. The factors obtained are used as a preconditioner for the conjugate gradient method. Numerical experiments are used to show the robustness and eeciency of this precon-ditioning technique, and to compare it with two other preconditioners.
منابع مشابه
MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least-Squares Problems
This paper describes a Multilevel Incomplete QR (MIQR) factorization for solving large sparse least-squares problems. The algorithm builds the factorization by exploiting structural orthogonality in general sparse matrices. At any given step, the algorithm finds an independent set of columns, i.e., a set of columns that have orthogonal patterns. The other columns are then block orthogonalized a...
متن کاملComputational Issues for a New Class of Preconditioners
In this paper we consider solving a sequence of weighted linear least squares problems where the only changes from one problem to the next are the weights and the right hand side (or data). We alternate between iterative and direct methods to solve the normal equations for the least squares problems. The direct method is the Cholesky factorization. For the iterative method we discuss a class of...
متن کاملBILUTM: A Domain-Based Multilevel Block ILUT Preconditioner for General Sparse Matrices
This paper describes a domain-based multilevel block ILU preconditioner (BILUTM) for solving general sparse linear systems. This preconditioner combines a high accuracy incomplete LU factorization with an algebraic multilevel recursive reduction. Thus, in the first level the matrix is permuted into a block form using (block) independent set ordering and an ILUT factorization for the reordered m...
متن کاملA Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems
This paper describes a technique for constructing robust preconditioners for the CGLS method applied to the solution of large and sparse least squares problems. The algorithm computes an incomplete LDLT factorization of the normal equations matrix without the need to form the normal matrix itself. The preconditioner is reliable (pivot breakdowns cannot occur) and has low intermediate storage re...
متن کاملModified Sparse Approximate Inverses (MSPAI) for Parallel Preconditioning
The solution of large sparse and ill-conditioned systems of linear equations is a central task in numerical linear algebra. Such systems arise from many applications like the discretization of partial differential equations or image restoration. Herefore, Gaussian elimination or other classical direct solvers can not be used since the dimension of the underlying coefficient matrices is too larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007